Shcherbina’s theorem for finely holomorphic functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Finely Differentiable Monogenic Functions

Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in [12] like a higher dimensional analogue of finely holomorphic functions.

متن کامل

A Picard type theorem for holomorphic curves∗

Let P be complex projective space of dimension m, π : Cm+1\{0} → P the standard projection and M ⊂ P a closed subset (with respect to the usual topology of a real manifold of dimension 2m). A hypersurface in P is the projection of the set of zeros of a non-constant homogeneous form in m+ 1 variables. Let n be a positive integer. Consider a set of hypersurfaces {Hj} j=1 with the property M ∩ ⋂...

متن کامل

A Splitting Theorem for Holomorphic Banach Bundles

This paper is motivated by Grothendieck’s splitting theorem. In the 1960s, Gohberg generalized this to a class of Banach bundles. We consider a compact complex manifold X and a holomorphic Banach bundle E → X that is a compact perturbation of a trivial bundle in a sense recently introduced by Lempert. We prove that E splits into the sum of a finite rank bundle and a trivial bundle, provided H(X...

متن کامل

A Maximal Theorem for Holomorphic Semigroups

This has a unique solution v(x, t) = Ttf(x) in the sense of Hille and Phillips [14, p. 622] whenever Tt is a C0–semigroup on X with generator −A; one writes Tt = e−tA [14, p. 321]. In order to ensure that v(x, t) converges μ-almost everywhere to f(x) as t→ 0+, it is often necesary to impose further conditions on f . For any closed linear operator V in X, we recall that the domain of V is the Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2009

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-009-0574-z